DUAN De-li1,LI Shu1. Review on Technology Progress for Sheathed Thermal Control Elements of Space Thruster[J]. Journal of Propulsion Technology, 2020, 41(1): 28-37.
[1] 朱宁昌, 刘国球. 液体火箭发动机设计(上)[M]. 北京: 宇航出版社, 1994.
[2] 李联成, 张 萍. 卫星管路加热带安装工艺方法探讨[J]. 航天器环境工程, 2008, 25(4): 384-386.
[3] 范剑峰, 黄祖蔚. 载人飞船工程概论[M]. 北京: 国防工业出版社, 2000.
[4] Testoedov N A, Yakimov E N, Ermoshkin Yu M, et al. Overview of Electric Propulsion Activity in Russia[C]. Italy: The 30th International Electric Propulsion Conference, 2007.
[5] Turner M J L. Rocket and Spacecraft Propulsion: Principles, Practice and New Developments[M]. UK: Praxis Publishing Ltd, 2008.
[6] Diaz N J. 空间核推进器[J]. 国外核动力, 1995, 16(3): 12-17.
[7] 谭 胜, 吴建军, 张 宇, 等. 激光支持的空间微推进技术研究进展, 推进技术, 2018, 39(11): 2415-2428. (TAN Sheng, WU Jian-jun, ZHANG Yu,et al. Research Progress of Laser-Supported Space Micropropulsion Technology [J]. Journal of Propulsion Technology, 2018, 39(11): 2415-2428.
[8] 陈阳春. 25N双组元发动机热控研究[J]. 火箭推进, 2015, 41(2): 38-49.
[9] 谭维炽, 胡金刚. 航天器系统工程[M]. 北京:中国科学技术出版社, 2009.
[10] 张月来. 内置式多孔加热器用泡沫电热材料研究[D]. 北京:中国科学院大学, 2012.
[11] 张 郁. 电推进技术的研究应用现状及其发展趋势[J]. 火箭推进, 2005, 31(2): 27-36.
[12] Jacobson D T, Manzella D H, Hofer R R, et al. NASA's 2004 Hall Thruster Program[R]. AIAA 2004-3600.
[13] Baggett R, Dankanich J. Electric Propulsion[J]. Aerospace America, 2004, 42(12): 58-59.
[14] 边炳秀. 卫星推进系统的历史、现状和未来[J]. 控制工程, 2001, 5-6: 28-39.
[15] 韩崇巍, 赵放伟, 张 吻, 等. 第二代490N发动机热控设计[J]. 航天器环境工程, 2013, 30(4): 388-391.
[16] 闵桂荣. 卫星热控制技术[M]. 北京:宇航出版社, 1991.
[17] 丁凤林, 潘海林, 毛晓芳. 双组元姿控发动机的热设计分析[C]. 北海:中国宇航学会首届学术年会论文集, 2005.
[18] 郭 宁, 唐福俊, 李文峰. 空间用空心阴极研究进展[J]. 推进技术, 2012, 33(1): 155-160. (GUO Ning, TANG Fu-jun, LI Wen-feng. Advances in Spaceborne Hollow Cathode[J]. Journal of Propulsion Technology, 2012, 33(1): 155-160.
[19] 张天平, 张雪儿. 空间电推进技术及应用新进展[J]. 真空与低温, 2013, 19(4): 187-194.
[20] Goebel D M, Chu E. High-Current Lanthanum Hexaboride Hollow Cathode for High-Power Hall Thrusters[J]. Journal of Propulsion and Power, 2014, 30(1): 35-40.
[21] Goebel D M, Watkins R M, Jameson K K. LaB6 Hollow Cathodes for Ion and Hall Thrusters[J]. Journal of Propulsion and Power, 2007, 23(3): 552-558.
[22] Nürmberger F, Hock A, Tajmar M. Design and Experimental Investigation of a Low-Power Hall Effect Thruster and a Low-Current Hollow Cathode[R]. AIAA 2015-3822.
[23] 任燮炎, 施应峰. 用矿物绝缘(MI)加热电缆代替管状电加热器[C]. 郑州:中国石油和化工自动化第八届技术年会, 2009.
[24] 李 曙, 李诗卓, 段德莉, 等. 小型姿、轨控推力器热控用微型铠装电加热器的研制[C]. 黄山:第五届空间热物理会议文集, 2000.
[25] 李凤翔, 程家骐, 陆 峰. Co-Mn-Ni-Mg-Fe-O系材料的高温热稳定性能[J]. 电子元件与材料, 1997, 16(4): 29-32.
[26] 张荣禄. 双组元推力器用新型片式加热器研制[D]. 北京:中国科学院大学, 2011.
[27] Tighe W G, Freick K, Chie K R. Performance Evaluation and Life Test of XIPS Hollow Cathode Heater[R]. AIAA 2005-4066.
[28] Mathers A. Development of a High Power Cathode Heater[R]. AIAA 2008-4815.
[29] Wordingham Christopher J, Taunay Pierre-Yves C R, Choueiri E. Multiple-Kilowatt-Class Graphite Heater for Large Hollow Cathode Ignition[R]. AIAA 2015-4010.
[30] Michael Tsay, Feng Charlie, Lenny Paritsky, et al. Complete EM System Development for Busek’s 1U CubeSat Green Propulsion Module[R]. AIAA 2016-4905.
[31] Duan D L, Li S, Ding X J, et al. Preparation of Ni-Cr Alloy Foam by Electro-Deposition Technology[J]. Material Science and Technology, 2008, 24(4): 461-466.
[32] Duan D L, Li S, Zhang R L, et al. Calculation of Apparent Resistivity of Metallic Open Cell Foams by Dodecahedron Model[J]. Material Science and Technology, 2007, 23(6): 661-664.
[33] Duan D L, Zhang R L, Ding X J, et al. Calculation of Specific Surface Area of Foam Metals Using a Dodecahedron Model[J]. Material Science and Technology, 2006, 22(11): 1364-1367.
[34] 张月来, 段德莉, 赵宇航, 等. 泡沫NiCrAl电热合金的制备及其电学性能[J]. 金属学报, 2013, 49(2): 214-220.
[35] 李诗卓, 李 曙, 张荣禄, 等. 空间发动机(推力器)热环境的模拟及铠装热控器件性能试验方法的研究[C]. 黄山:第五届空间热物理会议文集, 2000.